Artificial

Generalized Category Discovery with Decoupled Prototypical Network

Wenbin An^{1,3}, Feng Tian^{2,3}, Qinghua Zheng^{2,3}, Wei Ding⁴, QianYing Wang⁵, Ping Chen⁶

¹School of Automation Science and Engineering, Xi'an Jiaotong University

²School of Computer Science and Technology, Xi'an Jiaotong University

³National Engineering Laboratory for Big Data Analytics

⁴Department of Computer Science, University of Massachusetts Boston

⁵Lenovo Research

⁶Department of Engineering, University of Massachusetts Boston

⁶Department of Engineering, University of Massachusetts Boston wenbinan@stu.xjtu.edu.cn, {fengtian,qhzheng}@mail.xjtu.edu.cn {wei.ding,Ping.Chen}@umb.edu, wangqya@lenovo.com

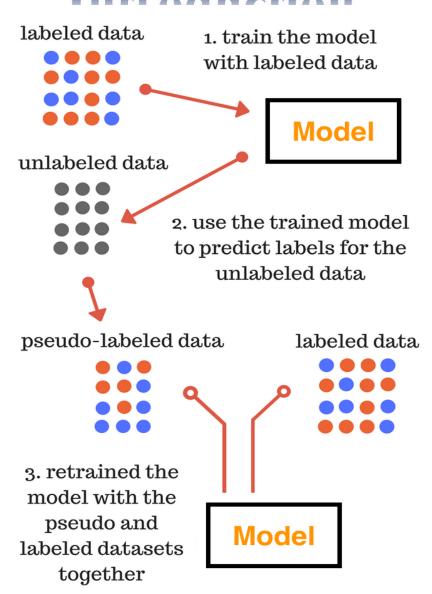
Code: https://github.com/Lackel/DPN

2023. 2. 16 • ChongQing

— AAAI 2023

Reported by Renhui Luo

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments



Introduction

Overview

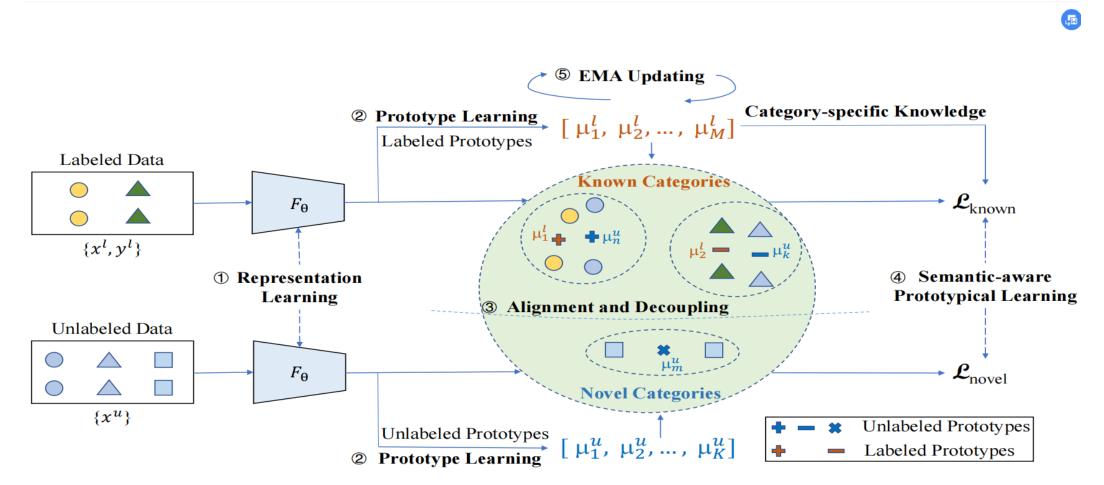
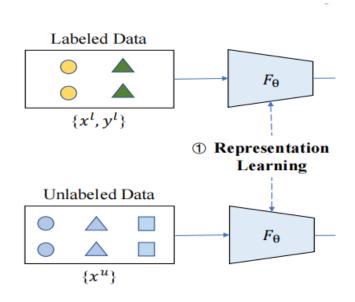
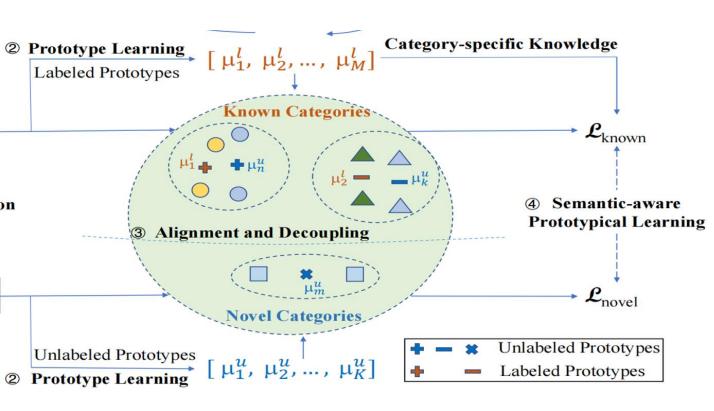
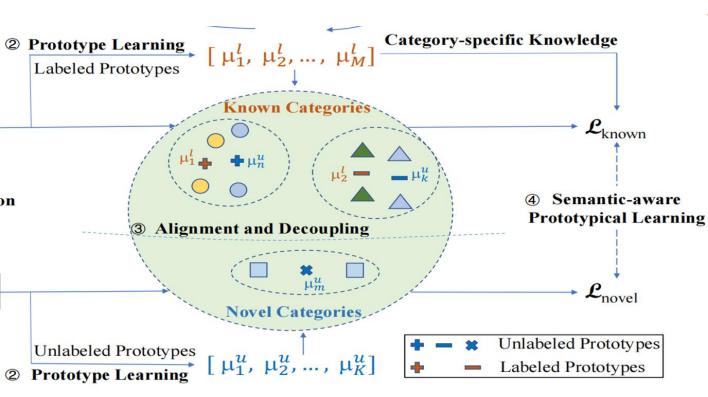




Figure 1: An overview of our model.

$$\mathcal{L}_{pre} = \mathcal{L}_{ce}(\mathcal{D}^l) + \mathcal{L}_{mlm}(\mathcal{D}^l, \mathcal{D}^u)$$
 (1)

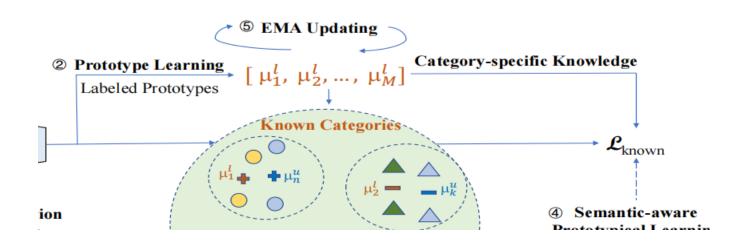
$$\hat{\mathcal{P}} = \underset{\mathcal{P} \in \mathcal{P}_{all}}{\operatorname{arg\,min}} \sum_{i=1}^{M} \mathcal{L}_{match}(\mu_i^l, \mu_{\mathcal{P}(i)}^u)$$
 (2)


$$\mathcal{L}_{match}(\mu_i^l, \mu_{\mathcal{P}(i)}^u) = \left\| \mu_i^l - \mu_{\mathcal{P}(i)}^u \right\|_2 \tag{3}$$

$$\mathcal{L}_{pl} = -\frac{1}{n} \sum_{i=1}^{n} log \frac{e^{-d(F_{\theta}(x_i), \mu_g^u)}}{\sum_{j=1}^{K} e^{-d(F_{\theta}(x_i), \mu_j^u)}}$$
(4)

$$\mathcal{L}_{spl} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} d(F_{\theta}(x_i), \mu_k^u) \frac{e^{s(F_{\theta}(x_i), \mu_k^u)}}{\sum_{j=1}^{K} e^{s(F_{\theta}(x_i), \mu_k^u)}}$$
(5)

$$\mathcal{L}_{spl} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \|F_{\theta}(x_i) - \mu_k^u\|_2 \frac{e^{\cos(F_{\theta}(x_i), \mu_k^u)/\tau}}{\sum_{j=1}^{K} e^{\cos(F_{\theta}(x_i), \mu_j^u)/\tau}}$$
(6)


$$\mathcal{L}_{novel} = \mathcal{L}_{spl}(\mathcal{D}^{un}, P^{un}) \tag{7}$$

$$\mathcal{L}_{reg} = \frac{1}{r} \sum_{i=1}^{r} \sum_{k=1}^{M} (1 - \cos(F_{\theta}(x_i), \mu_k^l)) \frac{e^{\cos(F_{\theta}(x_i), \mu_k^l)/\tau}}{\sum_{j=1}^{M} e^{\cos(F_{\theta}(x_i), \mu_j^l)/\tau}}$$
(8)

$$\mathcal{L}_{known} = \mathcal{L}_{spl}(\mathcal{D}^{uk}, P^{uk}) + \mathcal{L}_{ce}(\mathcal{D}^{l}) + \lambda \cdot \mathcal{L}_{reg}(\mathcal{D}^{uk}, P^{l})$$
(9)

$$\mathcal{L}_{dyn} = \mathcal{L}_{novel} + \mathcal{L}_{known} \tag{10}$$

$$\mathcal{P}_{t+1}^l \leftarrow \alpha \cdot \mathcal{P}_t^l + (1 - \alpha) \cdot \mathcal{P}_{t+1}^l \tag{11}$$

Table 1: Statistics of datasets. $|\mathcal{Y}_k|$, $|\mathcal{Y}_n|$, $|\mathcal{D}^l|$, $|\mathcal{D}^u|$ and $|\mathcal{D}^t|$ represent the number of known categories, novel categories, labeled data, unlabeled data and testing data, respectively.

Dataset	$ \mathcal{Y}_k $	$ \mathcal{Y}_n $	$ \mathcal{D}^l $	$ \mathcal{D}^u $	$ \mathcal{D}^t $
BANKING	58	19	673	8,330	3,080
StackOverflow	15	5	1,350	16,650	1,000
CLINC	113	37	1,344	16,656	2,250

Table 2: Model comparison results (%) on testing sets. Average results over 3 runs are reported.

Method	BANKING			StackOverflow			CLINC		
	All	Known	Novel	All	Known	Novel	All	Known	Novel
DeepCluster	13.95	13.94	13.99	17.37	18.22	14.80	26.92	27.34	25.67
DCN	17.85	18.94	14.35	29.10	28.94	29.51	29.64	30.00	28.45
DEC	19.30	20.36	15.84	19.30	20.36	15.84	19.99	20.18	19.40
BERT	21.29	21.48	20.70	16.80	16.67	17.20	34.52	34.98	33.16
KM-GloVe	29.18	29.11	29.39	28.40	28.60	28.05	51.64	51.74	51.50
AG-GloVe	30.09	29.69	31.29	29.23	28.49	31.56	44.70	45.17	43.20
SAE	38.05	38.29	37.27	60.33	57.36	69.02	46.59	47.35	44.24
Semi-DC	50.73	53.37	42.63	64.90	66.13	61.20	74.52	75.60	71.34
CDAC+	53.09	55.42	46.01	76.67	77.51	74.13	69.75	70.08	68.77
Self-Labeling	56.19	61.64	39.56	71.03	78.53	48.53	72.69	80.06	49.65
DTC	56.56	59.98	46.10	70.50	80.93	51.87	76.42	82.34	58.95
DAC	63.63	69.60	45.44	70.77	76.13	54.67	84.42	89.10	70.59
Semi-KM	66.23	73.62	43.68	73.13	81.02	49.47	81.42	89.03	59.01
LASKM	67.55	75.16	44.34	74.83	82.00	53.33	79.26	89.64	48.66
DPN (Ours)	73.61	80.04	53.99	83.20	84.18	80.27	87.62	91.29	76.79
Improvement	+6.06	+4.88	+7.89	+6.53	+2.18	+6.14	+3.20	+1.65	+5.45

Table 3: Results (%) of different model variants.

Model	All	Known	Novel
Ours	83.20	84.18	80.27
w/o Cross Entropy w/o EMA w/o Decoupling w/o Soft Assignment w/o Semantic Weights	82.53 82.00 81.10 80.80 70.50	83.47 81.87 82.93 83.87 72.53	79.73 74.00 75.60 71.60 64.40

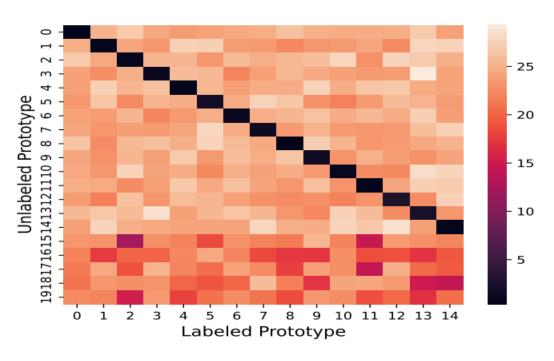


Figure 2: Distances between 15 labeled prototypes and 20 aligned unlabeled prototypes. Darker colors represent closer distances.

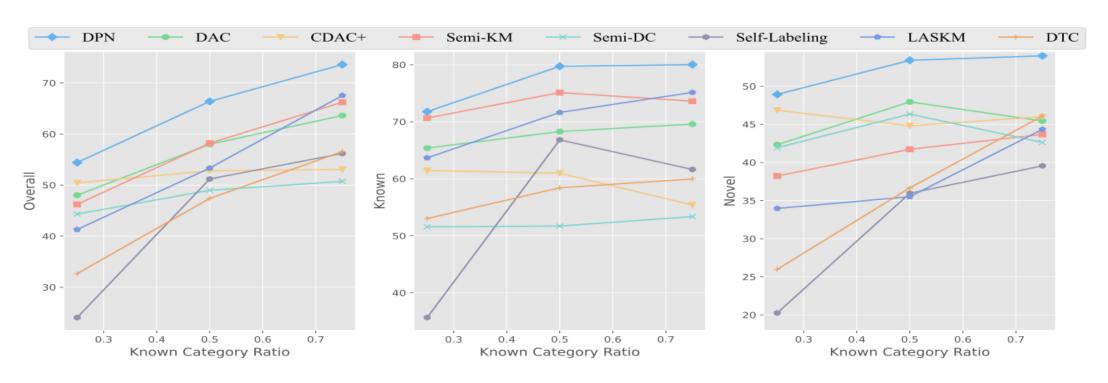


Figure 3: Effect of known category ratio on the BANKING dataset.

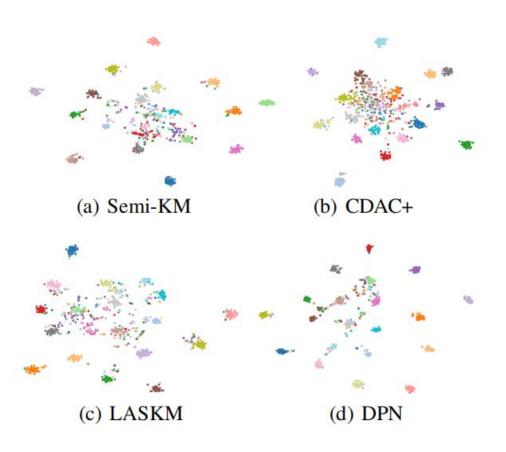


Figure 4: The t-SNE visualizations of embeddings.

Table 4: Estimation of the number of categories.

	CLINC	BANKING	StackOverflow
Ground Truth	150	77	20
DAC	130	66	15
Ours	137	67	18
Error	8.7%	13.0%	10.0%

Thanks!